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large-scale bone defects. In situations where these dis-
advantages outweigh the advantages of autologous bone 
grafts, alternatives like β-TCP come into play [7–9]. 

Research of β-TCP includes analysis of surfaces using 
fluorescence microscopy as one common technique to 
characterize cells found on these surfaces. For example, 
live/dead assays to access viability of cells [10], immu-
nofluorescence [10] or proof of loading using FITC 
conjugated drugs [11] are common practice. Nonethe-
less, fluorescence microscopy can also lead to unwanted 
effects or artifacts, possibly resulting in misinterpreta-
tion. The process of photobleaching describes the loss of 
fluorescence of a fluorochrome molecule due to chemical 
destruction after exposure to excitation light [12]. Conse-
quently, originally positive signals might be missed if the 
excitation time is too long. Techniques to examine spe-
cific proteins like immunolabeling also rely on the speci-
ficity of the primary antibody in use [13]. Without proper 
testing, unintended proteins might also produce positive 
signals. With immunolabeling, incomplete protein tag-
ging can also occur if the targeted cells are not be prop-
erly permeabilized [13].

Introduction
β-TCP ceramics are frequently used in orthopedic set-
tings and well researched [1–6]. They are biodegradable 
ceramics which hold osteoinductive and osteoconductive 
properties and are able to form a strong bond with host 
tissue. The mechanical properties of β-TCP however are 
limited. They can be seen as an alternative to the “gold 
standard” of autologous bone grafts, which, although 
they have high osteoinductive and osteogenic capacities, 
come with disadvantages like an increased risk of infec-
tion due to a second surgical site, limitation of available 
graft material and likewise limited mechanical proper-
ties, making them a great choice for smaller but not for 
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Abstract
Fluorescence analysis of β-TCP ceramics is often used to describe cells found on said ceramics. However, we found, 
to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to 
shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to 
reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, 
Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a 
consequence, scientists working with these dowels and likely even other types should try to avoid creating false 
positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence 
and by reducing them by using Technovit fixation when possible.
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Autofluorescence describes the inherent fluorescence 
without addition of an exogenous fluorescent agent found 
in some substances [14]. This phenomenon can be found 
in various instances. Examples include certain plastics 
[15], plants [16] and also human tissue [17, 18]. Depend-
ing on the signal strength, this phenomenon could also be 
falsely interpreted as a fluorescence caused by addition of 
external fluorescent molecules, if not properly accounted 
for in the first place. Another problem might occur, when 
different fluorescent agents with overlapping wavelength 
ranges of emitted light are chosen and not properly sepa-
rated with adequate filters [19].

During our analysis of β-TCP, we noticed artifacts that, 
to our knowledge, have not yet been addressed and could 
potentially be confused with cells during fluorescence 
microscopy in an appropriate context.

Material

Material Information
Ethanol 99% SAV Liquid Production 

GmBH, Flintsbach am 
Inn, Germany

Technovit 9100 Combipack (contains: 
1 × 1000 ml basic solution 1 × 120 g PMMA 
powder 8 × 1 g hardener 1 1 × 10 ml hardener 2 
1 × 5 ml regulator), #64,715,444

Kulzer GmbH, Hanau, 
Germany

Cerasorb M Cylinder (Lot D147.501043) Curasan, Kleinostheim, 
Germany

Kimtech® Science Precision Wipes, #7552 Irving, Tx, USA
Filter: Alizarin/Xylenolorange; Calcein; 
Cy5&AF647; Tetracyclin; FITC/Cy5 H Dualband 
Filter

AHF, Tuebingen, 
Germany

Olympus BX51 fluorescent microscope, 
equipped with a 10x objective

Olympus, Tokyo, 
Japan

UV-Lightsource X-Cite Series 120 Q Excelitas Technolo-
gies, Waltham, USA

Methods
We analyzed the surface of microporous β-TCP dowels 
(Ø 7 mm x L 26 mm, median pore diameter 5 μm, 40% 
total porosity [20], Fig. 1) produced by the RMS accord-
ing to our specifications [21, 22] using fluorescence 
microscopy. To reduce the artifacts we tried different 
procedures of either ultrasound bathing dowels in 70% 
ethanol followed by distilled water for 10 min each (fre-
quency 80/50 Hz, 26  °C) or ultrasound bathing in 70% 
ethanol followed by distilled water for 2 h with the same 
parameters. Sucking 5 mL of distilled water through 
the ceramics by applying a slight vacuum (650 mBar) to 
a flow chamber [23, 24] was tested as another method 
of reducing the artifacts. After ultrasound bathing for 
10 min each, some dowels were fixated using Technovit 
9100 new. Mechanical cleaning using cellulose wipes was 
tried in addition for Technovit fixated dowels and dowels 

ultrasound bathed for 10 min each. Untreated dowels (Ø 
7 mm x L 20 mm, median pore diameter 37 μm, 62% total 
porosity [20], Fig. 1) purchased from a different manufac-
turer, Curasan (Cersasorb M, Fig. 1), were also analyzed.

Images of the dowels were taken at a defined posi-
tion using an Olympus BX51 fluorescent microscope 
equipped with a 10x objective (Olympus, Tokyo, Japan) 
and filters for five different wavelengths. Artifact counts 
were determined for the whole image using ImageJ 
automated particle counting for images captured with 
a FITC/Cy5 H Dualband filter. All data are presented as 
mean ± standard deviation.

Results
The artifacts varied in size and shape but were often 
found to be round and had diameters ranging from 
approximately 5 to 80  μm. The artifacts were found on 
every dowel regardless of procedure and were fluo-
rescent for all five filters analyzed (Fig.  2). Completely 
untreated (8.67 ± 0.58), ultrasound bathed for 10  min 
each (12 ± 7.21) as well as dowels ultrasound bathed for 
2  h each (8.67 ± 5.03) showed said shapes for all wave-
lengths analyzed with no reduction in any group. Dow-
els fixated in Technovit showed a reduced number of 
artifacts (3.67 ± 0.58) compared to untreated dowels. For 
Technovit fixated dowels, mechanical cleaning reduced 
the artifacts even further (1.33 ± 0.58) but despite all 
efforts never achieved complete removal. Mechanical 
cleaning showed no effect for dowels ultrasound bathed 
for 10 min each (12.00 ± 1.73). (Table 1)

Untreated dowels by Curasan, were found to show said 
artifacts with slightly lower numbers than RMS dow-
els (5.33 ± 1.15). Cleaning the ceramics using 5 mL of 

Fig. 1 Picture of the two types of dowels analyzed within this work. The 
upper dowel was manufactured by Curasan, the lower dowel was pro-
duced by the RMS. A scalebar in cm is provided within the picture
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distilled water under a slight vacuum was unsuccessful in 
reducing the artifacts (7.33 ± 2.31). (Table 1)

Discussion
While the origin of the observed artifacts is unknown to 
us, impurities during the production process or surface 
modification during ceramic sintering [25] seem to be a 
reasonable explanation. The artifacts may be limited to 
the analyzed type of β-TCP samples produced by RMS 
and Curasan but for the evaluation of cells on β-TCP by 
fluorescence microscopy, researchers should be aware of 
the artifacts described in this note and prevent false posi-
tive results by considering their existence, even for other 
β-TCP products. With no fluorescence filter produc-
ing negative results, the artifacts can also be expected to 
extent to different wavelengths.

Table 1 Result of ImageJ counting for images captured with 
a FITC/Cy5 H Dualband filter of each analyzed group (n = 3) 
presented as mean ± standard deviation
Analyzed dowels Artifacts
Curasan uncleaned 5.33 ± 1.15
RMS uncleaned 8.67 ± 0.58

10 min ultrasound bath 12 ± 7.21
10 min ultrasound bath, mechanically cleaned 12 ± 1.73
2 h ultrasound bath 8.67 ± 5.03
slight vacuum 7.33 ± 2.31
Technovit 3.67 ± 0.58
Technovit, mechanically cleaned 1.33 ± 0.58

Fig. 2 Exemplary picture of fluorescence artifacts found on untreated, microporous β-TCP dowels provided by the RMS. All Frames show the same area 
using different excitation filters for Alizarin/Xylenolorange (Frame A), Tetracyclin (Frame B), Cy5&AF647 (Frame C), FITC/Cy5 H Dualband Filter (Frame D) 
and Calcein (Frame E). The Pictures were taken with an Olympus BX51 fluorescent microscope equipped with a 10x objective (Olympus, Tokyo, Japan)
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In general, in regard of the described artifacts, Tech-
novit fixation followed by cautious mechanical clean-
ing seems to be the most suitable procedure, if tolerated 
by the type of sample that has to be evaluated. In addi-
tion, and especially when untreated dowels are analyzed, 
checking a completely untreated dowel for the described 
unwanted artifacts as a reference, as well as separating 
artifacts from actual positive results by controlling other 
wavelengths that would not normally show fluorescence 
signals with the chosen parameters, seems to be a suit-
able method for preventing false positive results. Ultra-
sound bathing probably does not help to reduce this type 
of artifact.

Another possible option to reduce the effect of auto-
fluorescence is the exploitation of differences in fluores-
cence lifetimes between autofluorescent substances and 
fluorescent agents with longer lifetimes [26–28].

Assuming autofluorescence of impurities during pro-
duction as the source of artifacts and depending on 
the fluorescent agents in use, trying to find differences 
between the artifacts and structures labeled with exoge-
nous markers via means of fluorescence lifetime imaging 
microscopy [29, 30] may prove useful in the future to cor-
rectly differentiate these artifacts from cells.

Limitations
Only dowels produced by the RMS and Curasan, and 
only from one batch each, were analyzed. Also, the fil-
ters were limited to five different types, while we expect 
the bandwidth of fluorescenting wavelengths to be even 
broader than observed in this work.
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RMS  Robert Mathys Foundation
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